THERMAL CONDUCTIVITY OF MOIST POROUS SOLIDS

G. N. Dul'nev, Yu. P, Zarichnyak, UDC 536.21
and B. L. Muratova

A structural model and the method of computing the effective thermal conductivity of porous
moist solid materials are proposed.

A simplified model of the structure (Fig. 1) of a moist material and an approximate method of computa-
tion were proposedin [11for the prognosis of the thermal conductivity of porous solid construction materials.

Although the model [1] is a crude schematization of the structure of a real moist porous solid material,
it already took into consideration a significant characteristic of such an object, viz., the presence of dry and
moist segments, solid particles and pores, which may have both parallel and series arrangement in relation
to the heat flux.

Actually, in every case the heat flux passes through the solid particles (index S) and through the pores
filled by liquid W and dry air L, and is also transported by air —vapor mixture LD in the pores. All these
transport processes may occur simultaneously as well as sequentially, which is also reflected in the structure
of the model (Fig. 1). However, the fraction of the segments oriented parallel (1 — @) and perpendicular (a)
to the general direction of the heat flow is not known. The fraction () of the surface of the solid frame, which
is soaked by moisture, is also not known,

Making use of the known relations for the effective thermal conductivity of layers connected in parallel
and series, and also considering the known (or determined from experiment) parameters ¢ and b, Krisher
proposed the following sequence of computation of the thermal conductivity A of a moist material:
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It was assumed that parameter a could be determined from the system of equations [1]
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Fig. 1. Model of a moist material [1] (a) and an elementary cell of
the interpenetrating system [2] (b).
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from known (measured) values of the thermal conductivity of dry porous (Adry) and completely saturated
moist (Aga) material.

hga=As(l —mp) + Awmp, Asa=

The thermal conductivity of the air — vapor mixture A1y was determined from the formula
8 P dPy .

RoT "P—P, 4T

Thus, for the prognosis of the thermal conductivity of a moist porous material by the method of [1] the

three empirical parameters b, Adry, Aga for each investigated material and a set of initial parameters AL,
AW, Arp, mp, my must be known.

Mp=M+Ap=2r 4 (4a)

A qualitative advantage of the model (Fig. 1) is the possibility of solving the inverse problem, i.e., de-
termining @ from known Adry and Agg.

In a later study, Misnar {2] made an attempt to construct a model of the structure of a moist porous
solid material giving a better representation of its true structure than the parallel sheet model (Fig. la). In-
stead of the single model used in [1], Misnar proposed a set of two models and a new empirical parameter
taking account of the contribution of each model to the effective thermal conductivity of the system as a whole;
a critical review of Misnar's work is given in [3].

In the present article we propose to model the structure of a moist porous solid material by a structure
with interpenetrating components [3]. This approach permits us to use a model giving a closer representation
of the structure of real materials (Fig. 1b) and gets rid of the empirical parameter a; furthermore, if elimi-
nates the need for measuring the thermal conductivity of completely moist Aga and dry Agry materials, which
are computed by methods proposed in [3,4].

For this purpose a moist porous solid material is represented in the form of a multicomponent system;
the number of the components, their thermal conductivity, and their concentration are the same as in [1]. In
[3] 2 method of successive reduction to a two-component system is used for multicomponent systems, i.e., at
the first stage a system consisting of the first and second components is considered, for example, a solid and
dry air; the total volume of this system is reduced compared to the initial volume by the volume of the third
and fourth components. Then the concentration of the second ¢omponent in the separated volume is

V, : Vi my. (5)

My = ——2%——— == My == =
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The process of heat transport in the two-component model with interpenetrating components is investi-
gated in an elementary cell of the system (Fig. 1b), since the effective thermal conductivity of the system as
a whole is the same as that of its elementary cell {3]. '

The thermal conductivity of an elementary cell consisting of two components is computed from the for-
mula
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Fig. 2. Thermal conductivity of inorganic completely moist ma-
terials @) and dry materials (b): 1) computed from formula (6);
2) computed from formula (8) for M =c¢; 3) computed from for-
mula (8) for M = c?; 5) experiment from [1}; 4) a — experiment
from [5]; b — experiment from [3].
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where at the first stage the index i refers to the solid component and the index j to the second, i.e., to dry air,
Accordingly, we have
A=AhAs, hj=Ar, my=my, c;=c(mz), Ay = st

At the second stage we take the third component as the j component (water); the thermal conductivity of
the i component is taken equal to Ag1, calculated from formula (6) at the first stage; the volume concentration
of the third component (water) in the volume reduced by the volume of the fourth component is calculated from

the formula
Vw

3 = m;V = - = = .
V—-V4 V——VLD 1_@ 1 ~Mrp
v 14
The thermal conductivity of a three-component system consisting of the first (solid substance), second
@dry air), and third (water) components Agpw is calculated from formula (6).

Finally at the third stage we take the air — vapor mixture contained in the pores with moist walls as the
j component; the thermal conductivity of the j component is Ajp, the volume concentration is mip, and the
thermal conductivity of the i component is Agyw. The effective thermal conductivity of the entire system is

also caleulated from formula (6).

Thus, the seven parameters Ag, Aw, AL, MDD, mp, MW, b must be known for computing the thermal
conductivity of moist systems in the first approximation, i.e., instead of the thermal conductivity of the dry
and saturated moist materials it is sufficient to know the thermal conductivity of the base (thermal conductivity
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Fig. 3. Thermal conductivity: a) moist brick for m = 0.5 [1-4)
t = 80°Cl; b) moist Siporex for m = 0,78 [L-4) t = 82°C]: 1) com-
puted from formula (6); 2) computed from formula (8) for M =

¢; 3) computed from formula (1); 4) experiment from [1]; 5-7)
t =20°C; b5) experiment from [1]; 6) from formula (6); 7) from
formula (8) for M =c.

of the material with zero porosity). In [5] it is proposed that for many inorganic construction materials the
thermal-conductivity coefficient may be taken approximately equal to 3.2 W/m - K. Hence, we do not need
additional experimental data in the computation for moist construction materials of inorganie origin.

The thermal-conductivity coefficients of dry porous materials, materials whose pores are completely
filled with water, and moist materials were calculated using the technique discussed above for a wide range
of variation of the water content and temperature. The results are shown in Figs. 2 and 3.

The experimental data shown in Fig. 2a are taken from [1, 5] and agree well with the computational re-
sults for completely moist materials {curve 1) obtained from formula (6); this agreement is not observed for
the dry materials. Inthe entire range of variation of porosity the experimental points lie appreciably below
the values of the thermal conductivity computed from formula (6) (Fig. 2b).

Actually, inorganic porous construction materials usually have microfissures which sharply reduce
the thermal conductivity of the material even though they have practically no effect on the porosity. The ther-
mal conductivity of cracked materials can be computed by the method proposed in [3]:

xzxi[c’;fm+x»,.j(1_cj)2 fiﬂ-] (8)
v; 1 —c¢;
where parameter M characterizes the increase in the thermal resistance of the solid component due to the
fissures filled by the component with smaller thermal conductivity (gas, liquid). Parameter M depends on
the porosity, the dimensions of the microfissures, and the thermal conductivity of the component filling the
pores. The structure of parameter M is well substantiated in [3] for the model of a cracked material. How-
ever, the dimensions of the fissures are usually unknown; therefore, in the first approximation a rough esti~
mate of this parameter can be obtained using the simplest relationship. Thus, the following formulas may be
recommended for M for inorganic constructlon materials operating in an ordinary atmosphere: for weak frac-
turing M = ¢; for strong fracturing M = c?,

Curves 1, 2, and 3 in Fig. 2 are computed taking M =f(c) for the cases M =1, M=¢, and M = ek,
curves 1 and 2 in Fig. 3 are for the cases M =1and M =c.

The nature of the dependence A = A (mw/mPp) is a reflection of the following physical process: on in-
creasing the moisture content in the range 0 = my/mp = 0.4 the thermal conductivity increases mainly due
to the increase of heat transport as a result of evaporation of moisture from wet walls; a subsequent increase
of the moisture (mw/mp > 0.4) results in blocking of the pores by water drops and a consequent decrease of
the transport of the vapor; for a completely moist material (mw/mp = 1), the heat transfer occurs only
through the skeleton of the material and the pores filled by water.

The proposed methods of modeling the structure of moist porous solid construction materials make it
possible to predict their thermal conductivity in a wide range of variation of the significant parameters without
having to use partly empirical parameters and measure the thermal conductivity of dry and moist materials.
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NOTATION

a, empirical parameter taking account of nonuniform sections oriented parallel and perpendicular to

the general direction of heat flow in the model; b, empirical parameter taking account of the fact that only a
part of the surface of the solid frame is wetted and contributes to the diffusive heat transfer due to evaporation
and condensation of moisture; mS, mw, mj, my,p, volume concentration of the solid component, liquid, and
pores with dry and wet walls, respectively; A, effective thermal conductivity of moist materials; Ag, Ay,
A1, MAID, thermal conductivity of the solid component, liquid, dry air, and air — vapor mixture (diffuse com~
ponent); Adry, Aga, thermal conduetivity of dry porous and completely moist material; 9, diffusion coeffi-
cient; P, total pressure of the mixture; Pp, saturated vapor pressure; RD, universal gas constant; r, heat
of evaporation.

LITERATURE CITED

1, O. KRrisher, Scientific Foundations of Drying Technology [Russian translation], IL, Moscow (1961).

2. A. Misnar, Thermal Conductivities of Solids, Liquids, Gases, and Their Compositions [Russian trans-
lation], Mir, Moscow (1968).

3. G. N. Dul'nev and Yu, P. Zarichnyak, Thermal Conductivity of Mixtures and Composition Materials
fin Russian], Energiya, Leningrad (1974).

4, L. L. Vaselev and S. A. Tanaeva, Thermophysical Properties of Porous Materials [in Russian],
Nauka i Tekhnika, Minsk (1971).

5. I. S. Kammerer, Heat Insulation in Industry and Construction [in Russian], Stroiizdat, Moscow (1965).

THERMAL-CONDUCTIVITY RANGE FOR A COMPOSITE
HAVING KNOWN RANGES IN PARAMETERS FOR
THE COMPONENTS '

S. G. Zhirov UDC 536.21

The known ranges in thermal conductivity for the components may be used to determine the
range in thermal conductivity for a composite; formulas have been derived for the distribution
coefficients, which provide detailed values in each case.

There are presently many different methods of calculating thermal conductivities for composites in
terms of the known conductivities of the components; these methods form the subject of several reviews [1-4].

In these methods it is assumed that the thermal conductivity and the degree of filling are known exactly,
whereas in any measurement there is always some experimental error, and the final spread is governed by
the error of measurement as well as by variations in the properties of the material itself. In either case,
the measured value for the thermal conductivity is to be treated as a random quantity, one of the characteris-
tics being the mathematical expectation (most likely value) and another being the standard deviation.

In this connection it is of interest to determine how the spread in the thermal conductivity for each of
the components affects the spread in the same for the composite for various proportions of the components.

Further, a real composite also has a degree of filling in a finite volume that may also be considered as
a random quantity, which deviates to some extent from the mean value. Therefore, the thermal conductivity
of the composite should vary even within the volume of a specimen. We show below that in certain instances
one can determine in simple fashion the spread in the thermal conductivity of the composite as a function of
the spread in the degree of filling.

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 31, No. 2, pp. 284-288, August, 1976, Original
article submitted June 23, 1975, -

This material is protected by copyright registered in the name of Plenum Publishing Corporation, 227 West 17th Street, New York, N.Y. 10011, No part
of this publication may be reproduced, stored in a retrieval system, or transmitted, in any fqrm or by any means, electronic, mechanical, photocopying,
microfilming, recording or otherwise, without written permission of the publisher. A copy of this article is available from the publisher for $7.50.

932



